

Pressure

1.	. Define "pressure." The measurement of force exerted on a surface							
2.	a)	Complete th	e formula f	or calculati	ng pressure:			
			$P = \frac{F}{A}$		$P = \frac{Pressure in}{Force in N}$ $A = \frac{Area in m^2}{A}$			
	<i>b</i>)	N is the sym	bol for		n	ewton		
	c)	m ² is the syr	mbol for		squ	are metre		
	<i>d</i>)	N/m ² is the s	symbol for _		newton	per square me	etre	
3.	a) b)	The unit of p Its symbol is One pascal is acting on a s To measure surface, we	oressure in the second of the second of the surface area high pressure would use the second of the s	he internation in the pressure of re, such as	generated by square metre the atmosphe pascal (kPa)	the force of	pon the E	
4.	Th	List two oth Millimetres Atmospher de following elessure measuressure to ano	s of mercury res (atm) equivalencies ared at sea le ther:	(mm Hg) s, which re	present the va used to conve	lues of norma ert pressure fi	al atmos rom one	pheric
	-	101.5	_ KPa =	700	mm Hg = _		atm	

Factors that influence the amount of pressure

5. Summary table of factors that influence the amount of pressure

	Relationship between pressure and the sur- face area upon which the force is applied	Relationship between pressure and the applied force	
Mathematical relationship	Pressure is <u>inversely proportional</u> to the surface area upon which the force is applied.	Pressure isdirectly proportional to the applied force.	
Explanation	 When the force is the same: The larger the surface area, the weaker the pressure The smaller the surface area, the higher the pressure 	When the surface area is the same: The stronger the force, the higher the pressure The smaller the force, the weaker the pressure	
Diagram	Pressure as a function of surface area (Pa) Surface area (m²)	Pressure as a function of force	

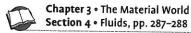
Pressure and the particle theory

6.	a)	Define "fluid." A substance that has no defined form and can flow in all directions				
	<i>b)</i>	All liquids and	gases	are fluids.		
	c)	When the particles of a fluid co	ome into contact with the	walls of the container		
		holding them, they exert	force or pressure	on them. The more		
		the particles <u>collide</u> or	r come into contact with t	he walls of the container,		
		the <u>greater</u> the <u>pre</u>	essure exerted by the f	luid will be.		
7.	a)		e fluids to move.			
	b)	Fluids always move from an are	ea ofhigh	pressure to an area of		
		low pressure				
	c)	In the case of gaseous fluids, th	is phenomenon is called	diffusion .		

Chapter 3 • The Material World Section 4 • Fluids, pp. 286–287

Compressible and Incompressible Fluids

	5 6: " "!!:!:t"	Having the capacity to decrease in volume upon application of
1.	Define "compressibility.	riaming and departy
	a force	

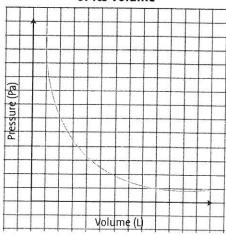

- 2. List some practical applications of gas compressibility. Gas compressibility makes it possible to store a large volume of gas in a small space. For example, the air needed for a deep-sea dive lasting several hours can be stored in a small tank that the diver can easily carry.
- 3. Summary table of compressible and incompressible fluids

Type of fluid	Compressible Fluid	<i>Incompressible</i> Fluid	
Type of male			
State of the fluid	Gaseous	Liquid	
Space between the particles, according to the type of fluid	Relatively large	Small	
Effect of a force on the particles, accord- ing to the type of fluid	The particles get closer together.	The particles cannot get closer together.	
Effect of a force on volume, according to the type of fluid	The volume decreases.	The volume does not change.	

4.	When pressure is exerted on an incompressible fluid, force is transferred from
	one particle to another within the substance. This phenomenon causes the liquid
	to flow out of its container or to
	move through a tube or conduit

The Relationship Between Pressure and Volume

1. Summary table of the relationship between the pressure and volume of a compressible fluid.


	The compressible fluid (gas) occupies a large volume	The compressible fluid (gas) occupies a small volume
Illustration based on the particle model		
Effect on the particles	There are <u>fewer</u> collisions between the particles and the walls of the container.	There are more collisions between the particles and the walls of the container.
Pressure exerted by the gas	The gas exertslowpressure.	The gas exertshigh pressure.

_			-		
2.	Comp	lete t	the	following	sentence:

When the ______ is constant, the pressure of a given quantity of gas varies ______ inversely with the volume occupied by the gas and vice versa.

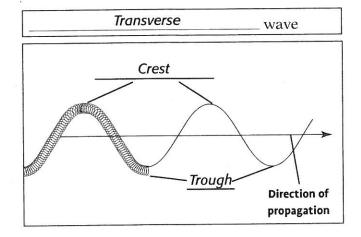
3. Complete the following graph, which illustrates the relationship between the pressure of a gas and the volume it occupies:

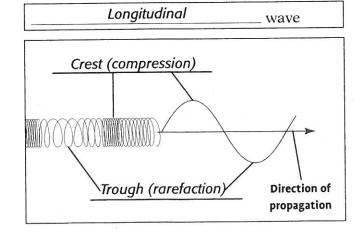
Gas pressure as a function of its volume

Chapter 3 • The Material World Section 5 • Waves, pp. 294–298

Frequency, Wavelength and Amplitude

Waves


- 1. Define "wave." <u>Deformation that propagates through a vacuum or through a medium that contains matter</u>
- 2. Summary table of types of waves


*	Mechanical	waves	Electromagnetic waves
Medium in which it moves	Material medium		Material medium or vacuum
Three examples	Water wave, sound, seismic wave		Radio waves, light waves, UV rays

Types of waves

- **3.** *a)* Complete the following diagram:
 - b) This type of wave produces a deformation that is perpendicular
 to the direction in which it propagates.
 - c) Provide three examples of this type of wave:

 Electromagnetic waves, water waves and earthquakes
- **4.** *a)* Complete the following diagram:
 - b) This type of wave produces
 a deformation that is
 parallel to the
 direction in which it propagates.
 - c) Provide an example of this type of wave:Sound

